Benchmark LLMs - LM Harness, Flask
LM Harness Benchmarks​
Evaluate LLMs 20x faster with TGI via litellm proxy's /completions
endpoint.
This tutorial assumes you're using the big-refactor
branch of lm-evaluation-harness
Step 1: Start the local proxy
$ litellm --model huggingface/bigcode/starcoder
Using a custom api base
$ export HUGGINGFACE_API_KEY=my-api-key #[OPTIONAL]
$ litellm --model huggingface/tinyllama --api_base https://k58ory32yinf1ly0.us-east-1.aws.endpoints.huggingface.cloud
OpenAI Compatible Endpoint at http://0.0.0.0:8000
Step 2: Set OpenAI API Base & Key
$ export OPENAI_API_BASE=http://0.0.0.0:8000
LM Harness requires you to set an OpenAI API key OPENAI_API_SECRET_KEY
for running benchmarks
export OPENAI_API_SECRET_KEY=anything
Step 3: Run LM-Eval-Harness
python3 -m lm_eval \
--model openai-completions \
--model_args engine=davinci \
--task crows_pairs_english_age
FLASK - Fine-grained Language Model Evaluation​
Use litellm to evaluate any LLM on FLASK https://github.com/kaistAI/FLASK
Step 1: Start the local proxy
$ litellm --model huggingface/bigcode/starcoder
Step 2: Set OpenAI API Base & Key
$ export OPENAI_API_BASE=http://0.0.0.0:8000
Step 3 Run with FLASK
git clone https://github.com/kaistAI/FLASK
cd FLASK/gpt_review
Run the eval
python gpt4_eval.py -q '../evaluation_set/flask_evaluation.jsonl'
Debugging​
Making a test request to your proxy​
This command makes a test Completion, ChatCompletion request to your proxy server
litellm --test